Factors Affecting Filter Penetration and Quality Factor of Particulate Respirators

نویسندگان

  • Sheng-Hsiu Huang
  • Chun-Wan Chen
  • Yu-Mei Kuo
  • Chane-Yu Lai
  • Roy McKay
  • Chih-Chieh Chen
چکیده

In the present study, a theoretical model was used to examine factors affecting the filtration characteristics of filters used for respiratory protection. This work was designed to support the particulate filter test requirements established in 1996. The major operating parameters examined in this work include face velocity, fiber diameter, packing density, filter thickness, and fiber charge density. Characteristics of the most penetrating particle size were also modeled with the same operating parameters. The results showed that aerosol penetration through electret filter media increases with increasing face velocity and increasing fiber diameter, and decreases as packing density, filter thickness or fiber charge density increase. Face velocity and fiber charge density have more significant effects on filter quality than the other factors. Filter quality increases with decreasing face velocity or increasing fiber charge density. For electret filters, (1) the most penetrating particle size increases with increasing fiber diameter; (2) an increase in packing density, thickness, or fiber charge density would cause the most penetrating particle size to decrease, and (3) the most penetrating particle size through electret filters increases with increasing face velocity and decreasing filter thickness. On the other hand, for non-electret filter media, the most penetrating particle size increases with decreasing face velocity, and the filter quality factor is not affected by filter thickness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filter Performance Degradation of Electrostatic N95 and P100 Filtering Facepiece Respirators by Dioctyl Phthalate Aerosol Loading

Polydisperse dioctyl phthalate (DOP) aerosols are employed for testing filter penetration with loading of Rand P-series particulate filters for National Institute for Occupational Safety and Health (NIOSH) certification. Penetration for filters must not exceed NIOSH allowed maximum levels during the entire loading of 200 mg DOP indicating no filter degradation. Degradation of respirators loaded...

متن کامل

Evaluation of a quantitative fit testing method for N95 filtering facepiece respirators.

A method for performing quantitative fit tests (QNFT) with N95 filtering facepiece respirators was developed by earlier investigators. The method employs a simple clamping device to allow the penetration of submicron aerosols through N95 filter media to be measured. The measured value is subtracted from total penetration, with the assumption that the remaining penetration represents faceseal le...

متن کامل

Performance of respirator filters using quality factor in Korea.

A respirator filter of good quality has not only high aerosol collection efficiency but also low air resistance. "Quality factor", which is expressed with aerosol penetration and pressure drop, can be used to rank the performance of respirator filters within the same category. This study focuses on evaluating several respirator filters which are widely used in Korea using quality factor. Two me...

متن کامل

Total inward leakage of nanoparticles through filtering facepiece respirators.

Nanoparticle (<100 nm size) exposure in workplaces is a major concern because of the potential impact on human health. National Institute for Occupational Safety and Health (NIOSH)-approved particulate respirators are recommended for protection against nanoparticles based on their filtration efficiency at sealed conditions. Concerns have been raised on the lack of information for face seal leak...

متن کامل

Comparison of nanoparticle filtration performance of NIOSH-approved and CE-marked particulate filtering facepiece respirators.

The National Institute for Occupational Safety and Health (NIOSH) and European Norms (ENs) employ different test protocols for evaluation of air-purifying particulate respirators commonly referred to as filtering facepiece respirators (FFR). The relative performance of the NIOSH-approved and EN-certified 'Conformité Européen' (CE)-marked FFR is not well studied. NIOSH requires a minimum of 95 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013